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b v w  bremsstrahpung absorption in large radiation fields 
a binary collkions-classical theory II. Integrated rate 
M@&nts for Coulomb collisions 

G J Pert 
Department of Applied Physics, The University of Hull, Hull, HU6 7RX, UK 

Received 14 March 1975, in final form 15 September 1975 

Abstrprr Integrated rate coefficients for the absorption of electromagnetic radiation in. 
plasma when the plasma frequency is less than the radiation frequency are calculated from 
classical expressions derived earlier. The resulting formula is applicable over the complete 
range of field strengths. Numerical calculations are used to give useful interpolation 
formulae for the complete range of field strengths. The behaviour at high field strengths is 
d i i d .  

'Iheeoatinued interest in high-field inverse bremsstrahlung has led to a number of 
PapeTSinwhich the photon absorption cross section has been calculated as a function of 
&electron velocity. However, few expressions for the total integrated rate in a plasma 
havebeen given. Osborn (1972) has derived from the Born approximation result an 
npression involving a double sum containing modified Bessel functions of the second 
&which do not rapidly converge when a large number of photons are absorbed in 
faehmbion. S i n  (1965) using a classical approach has given some general results, but 
@theirsimpler forms these appear to apply only to restricted physical conditions. 

this paper the classical approximation discussed earlier (Pert 1972a) is used to 
%e an integrated expression for the total radiation and absorption rate by inverse 
b k i h l u n g  of a piane-polarized beam of arbitrary intensib in a fully ionized 
h a .  

Numend calculations of this general, but cumbersome, formula, are used to 
simple polynomial approximations valid over a limited range. A simple 

mntation Of questionable validity is used to investigate the appropriate form of the 
ahsorption coefficient at high fields. However, the good fit shown by the results obtained 

to this form confirms the usefulness of this approximate analysis. 
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464 GJPert 

the absorption rate is determined by the electron ‘quiver’ velocity 

(11 
U = e E / m  

where E is the instantaneous electric field, e and m the electronic charge 
reipctively. The average energy gain per electron of thermal velocity 
given by 

mars 
in he 

(2) mni (U mud) 8f 

where U = U + uT is the total velocity, and a d  the momentum transfer cross %don: the 
average is taken over time and‘over the angular distribution function. 

me role of high fields perturbing the electron distribution is disc& j,, pert 
(1972a, b). It is concluded that in a fully-stripped plasma where Coulombicaj&iB 
dominate, electron-electron collisions will be much more frequent and that in 
quence a Maxwellian distribution will be maintained. In this paper we therefore 
that the electron distribution may be satisfactorily represented by a Maxwelli of 
temperature T,: 

f(%) = (m/2?rkTe)’I2 exp( - mv$/2kTe). (3) 

We may write the instantaneous energy absorption rate averaged over the electroo 
distribution 

(4) 3 R = f(uT)ud(U)vU. U d UT. 5 
Thus changing the integration to one over U rather than uT we have: 

R =2? rmsy(m/2~kT, )~ /~  U. uv-* In(cru2) dv d(cos 8) exp[-m(u-~)~/2kTJ 
(3 

where ud for Coulomb collisions is given by: 

a d  = y 1n(au2)/u4 

where 

Performing the integral over the angle 8 between U and U and averagingoVerhew 
obtain 

&ad 
where uo is the amplitude of the ‘quiver’ velocity, and I, a modified B e d f u o  
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kind. This expression may be simplified to give: L W  

~s2,,(m/2~kTe)”’ 1 [2n/(2n + 1)1[1/(n!)’]M($, n + 1, mu%/2kTe) 
CO 

n = l  

x dv(y/v) In(au2)(mu0v/2kTe)’” exp(-mv2/2kTe) (8) 

#here M a confluent hypergeometric function (Slater 1960). The integration over U 
waybe performed in a standard manner to give 

&2,my( m/27rkTe)’” 

I 
Q) 

[ 1 /(2n + 1)( 1 /n !)( mu;/2kTe)” exp(-mu;/2 kTe) 
n = l  

x M ( &  n+ 1, mu;/2kTe)[Jl(n)+ In(2akTe/m)] 5 (9) 

& #(n).is the digamma function. 
$he absorption coefficient is given by: 

~ = ~ J ( C E ~ / ~ V ) - ’  

(&y-’ exp(-mu:/2kTe) 8rneniZ2e6 O0 1 c - - 
cv’(2~mkT~)~’* “=I  n!(2n+ 1) 2kTe 

xM($, n +  1, m u ~ / 2 k T e ) [ l n ( 8 k 3 T ~ / 2 ’ ~ ’ e 4 m ) + 3 ~ ( n ) l  (10) 

&re ne is the electron density, c the velocity of light and Y = w / 2 ~  is the radiation 

Wecoefficient of the digamma function-in this case 3 4 e p e n d s  on the nature of 
blower cut-off used. We have here assumed that the cut-off is given by the Landau 
parameter determined by U. If a constant impact parameter cut-off is used as by Dawson 
doberman (1962) the factor is 1 and the iirst-order term n = 1 is identical to their 
upression. In general if the ratio of the impact parameters (bmaX/bmin) varies as U’ the 
mtlkient of the digamma function is 7. 

A small-order expansion of (10) may be easily made using Kummer’s transforma- 
ti00 to give: 

frequency. 

‘ b d  formulae 

loddations of laser-plasma interaction it is convenient to have simple formulae for 
‘hTtion coefficient which can be used with a minimum of computation. Due to 
‘heplesen@d the sums, equation (10) is clearly not of this form. We may, however, 
Pkaioaruniversal’ formula by writing (10) in the form: 
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where 

and 

(13) 

provided we can find a convenient representational form for Yl and Y2$. Thiswasdone 
by evaluating the sums Yl and sP2 directly. For large values of x this gave ~~i~~ 
trouble due to the change in the asymptotic representation in the region x = n. In @ 

region the sum had to be numerically evaluated by direct summation of a n h t  
hypergeometric series, which limited the range of x to values less than 5 x 10'' dne to 
problems associated with finite numerical range of the computer and round 08 enmb 
the sum. An alternative representation using direct integration of (5)  was but 
found unsatisfactory due to the finite range of the exponential available on & 
computer. 

The evaluated sums are shown plotted in figure 1. It may be clearly seen data 
significant decrease in the absorption coefficient occurs, when mu:/2kTe> 1,i.e.wkn 
the 'quiver' velocity exceeds the mean thermal velocity as discussed previously. 

For computationd purposes we have obtained a least-squares fit for Y1 and Y; as 
functions of x, valid for 0.1 <x < 10.0. 

For large x we have used a representation for 9, and Y2 suggested by the analysism 
the next section 

s~,(x) = 3 f [1/(2n + ~)lxn-~[~(i, n +I, x>/n!]*(n)  e-' 
n=l 

s1=(J.rr)x3'2~l/3=$ h x + u o + a l / X + U 2 / x 2 + .  . . 
and 

s*=(J.rr)x3'2Y*/3= ( S 1 + ( y ) , + b O + b l / X + b 2 / X 2 + .  . . 
X 

(141 

'O-4 t 
I 

F v  1. Plot of the sums .Yl and Y2, equation (20) as functions of X. NotehattheFb 
logarithmic. Thus the zero of Y2 at x = 2.1483 appears as a discontinuitY: ;ursmaUvalwd 
x, 9'2 is negative and for large values positive. 

factor 3 appearing in (12) and (13) ensures the limits: 

lim Y1 = 1; lim Y2= -y. 
I-0 *-DO 
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thecoefficients ao, al . . . , bo, bl . . . being found by a least-squares fit. It was found that 
t a gave a significant improvement for the value of S2. We may compare 
with those given by the subsequent analysis. The value of the constant, a, 

by a teast-squares. fit was 0.018 275 3, which is in good agreement with the 
ddat& value of 0.018 244 99, (1 -In 2-$y), given by equation (25). This agree- 
reeot - to be expected as the principal contTibution to this constant comes from 
dt,&,ns to the sum (10) with small n. The values of a. and bo are not, however, 

ith equations (25) and (26) due, it is believed, to the higher-order terms in 
c expansion, which cause non-exponential like behaviour in the region 

results obtained were consistent with estimates made of the deviations 

our standard formulae for the general absorption coefficient may be sum- 
md by this behaviour. 

&: 

[In A(9-7841 x.10-’-3.5838 x lO-’x +6.0991 x 10-2x2 8m,niZ 
3~v*(ZmnkT~)~” I= 

-4.7356X 10-3x3+ 1.3266X 10-4x4) 

-77(5*3799X 10-’-3*9001 X 1 0 - l ~  +8*0196X 10-2~2 

-6.7431 x 10-3x3-1-9651 x 10-4x4)] 

mthe range 0.1 < x < 10.0$. 

htherange lO<x<m where 

st=; lnxt0.637 78+ 17.3545/x-894.685/x2+ 11 792.6/x3 -46 022*2/X4 
and 

&’6,+0.018 2753)’- 1.329 35 -39.2639/~ + 1804.26/x2- 17 135.8/x3 

+30 532.21~~.  
In formulae A and x have the following values 

A=(8k3T; /Z2~’e4m)  and x = mu%/2kTe. 

‘hatternative more accurate, but higher-order, expression for (16) is: 

‘=j$& [ In 49.93 10 x lo-’ -4.1 184 x 1O-’x + 9-2852 x 10-2x2 - 1.150 13 x 

+7*1657x 10-4x4- 1.726 19X lO-’x’) 

-r)(5-63404~ 10-’-4.82479XIO-’x+1.353 13X 10-’x2-1-84476X 10-*x3 
41*20664+10-3x4+2*986 21x ~ O ” X ’ ) ] .  
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These formdae should be accurate to better than 1 part in lo3. However, it shoula 
be remembered that their validity is limited by physical restrictions on the 

seaioa namely binary collisional behaviour and the use of simple cut-offs for &e cross 
which probably introduce errors larger than the COmpUtatiOnal ones. It should 
noted that only equation (15)  is a true expansion Of (lo), the others being derived by 
calculating the best polynomial fit to the numerical values obtained by evaluating& 
sum directly. h particular, equation (18) should not be regarded as an asyrnptatie 
expamion, although it is probable the true one will have the same form with aemt 
numerical coefficients. 

el w 

4. High-field limit 

Unfortunately, it is not possible to derive the true asymptotic limit of equation (10) at 
high fields, since the complete asymptotic expansion for M(a, b, x ) for large x is not 
known. However, it is known (Slater 1960) that for large x 

and 

M(a, b, x)=(1 -x/b)-"{l  - [a(a + 1 ) / 2 b ] [ x / ( b  -x)IZ}  b>>x>>l .  (21) 

Thus the term appearing in the sum (10) has the limiting forms for large x :  

This suggests that in order to investigate the form of the asymptotic limit of thesum 
we replace the confluent hypergeometric function term in (10) by a cut-off term. In 
doing this it must be clearly born in mind that we do not regard the result thus obtained 
as an asymptotic limit, but rather as a guide to its form. Confirmation that this W 
provides an appropriate form of the asymptotic solution is shown by the good Bofk  
numerically calculated solution to this form. For this purpose we have used a 
general exponential cut-off: 

the exponential term being chosen with variable coefficients 5 and f; Which allow the 
position and 'sharpness' of the cut-off to be varied. 

In order to investigate the behaviour at hi& field we replam the tbe hypergeometric function in (10) by the crude representation (22). In this case 
absorption coefficient is given by equation (17) but with the sums SI and &rePladbF 

(Dl 
S I =  ? [1/(2n + 111 exp[-(n/tx)c] 

n=l  
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e v e l y .  The sums have been evaluated in the appendix with t x  replaced by X, 

$@ 
SI =$[ln(tx)-y/[]-O.O18 244 99 (25) 

ald 
S2=~[ln(~x)-y/[]2+.rr2/24~2-0.589 1150. (26) 

results were used to suggest the correct form for the high-field expressions, SI 

particular for 5‘ = 1 and 5 + CD or from the numerical results we obtain: 
d$,for Y1 and Y2 in equation (14) in the numerical calculations. 

16mz,ni e3Z2w [ h(&) In( 8 k 3 P  e )+S[ln(*)]’] (27) 
cE3 2kTe Z 2 w 2  e4m 2kTe K =  

a k i n  agreement with the value obtained earlier (Pert 1972a, b) when the digamma 
fador is neglected in accordance with the constant cut-off (7 = 0), as assumed previ- 
&* 

We have derived an integrated rate coefficient for the absorption of electromagnetic 
radiation in binary Coulomb collisions which is valid over the complete range of field 
strengths. This result is clearly limited to studies involving fully-ionized plasma whose 
# m a  frequency is much greater than the radiation frequency. This result involving an 
iDfmite sum containing confluent hypergeometric functions will converge rapidly if the 
deetron thermal energy is greater than its ‘quiver’ energy, and is therefore a more 
convenient form to use than that due to Osbom (1972) in the classical limit, where the 
&dual photon energy is small and in each collision a large number of photons are 
hdtaneously absorbed. We may note that this represents a sum over a large number 
dhigh-order multiphoton processes. 

At high fields the sum does not rapidly converge. We have therefore derived the 
WtOtiC expansion for use in this case. 
be results do not show any similarity to the general expression derived by Silin 

(!%5)> Probably due to the complicated nature of this result. Silin has only given 
@$fkd results which are valid when o << uT/hD = up, i.e., outside the range of the 
*M theory. 

the evaluation of certain s u m  

w e q h e  the evaluation of: 
4) 

C (2n + I)-’ exp[- (n/x)‘I 
n = l  
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for very large values of x. Since l 1 1  we may clearly write 

where nl is chosen such that x >> nl >> 1. Since 

where y is Euler's constant, we obtain: 

S1=( iy+ In 2-1)+; ln(n,+~)+(25)-'El(nl/x)' 

where El is the exponential integral. Since x >> nl >> 1 we obtain: 
/ 

s1 =;(in x -y/l>+$y+ In 2-  I.  
The second sum required is: 

s, = : C1/(2n + 1)1$(n) expr - (n/x)'I. 
n = l  

In this we use the asymptotic form of #(n), namely ln(n) to write: 

where . 

N 
= lim ( $(n)/(2n+ l)-$ln(~]z-$(ln 2)2-?r2/61). 

N-bm n = l  

The integral in equation (A.7) is evaluated as follows: 

'1 n + l  
r m  In(n)exPr-(n/x)Sl dn 
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(A.lO) 

p 1. Since x >> 1 we may replace the exponential integral by its small-order 

S2=B1+a(ln x - y / f ) ' + ~ ~ / 2 4 5 ~  (A.11) 
to yield: 

* 
N 

B1= N-a lim ( n = l  [~(n)/(2n+l)]-$(lnN)')=-0.589 1150 (A.12) 

m&dated directly. 
Mm (A.5) and (A.ll) we note that 

S, = [S, - (iy + In 2 - I)]'+ (7r2/24L2) f B1 (A. 13) 

has been found by numerical calculation to be more accurate than (A.11) for 
tatge, but finite, x. 
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